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THE HERMITE-HADAMARD INEQUALITY FOR
CONVEX FUNCTIONS OF A VECTOR VARIABLE

CONSTANTIN P. NICULESCU

(communicated by A. M. Fink)

Abstract. The Hermite-Hadamard inequality is discussed in the light of Choquet's theory.

It is well known that every convex function f : [a, b] — R can be modified at
the endpoints to become convex and continuous. An immediate consequence of this
remark istheintegrability of f. Themeanvalueof f,

1 b
M(f):m/a f(X)dX,
can then be estimated by the Hermite-Hadamard | nequality,

f(250) <min < HEEIE) (HH)

which follows easily from the midpoint and trapezoidal approximation to the middle
term. Moreover, under the presence of continuity, equality occurs (in either side) only
for linear functions. An updated account on (HH) areto befoundin [2].

What about the case of functions of several variables? A recent paper by S. S.
Dragomir [3] (see aso [2]) describesthe case of ballsin R*, by proving that

f(a)g\m%w///m f(x)dng//SRm f(x) ds

for every continuous convex function f : Br(a) — R. However, as we shall show in
the sequel, more general results are aready available in the existing literature. In fact,
the right approach of the entire subject of Hermite-Hadamard type inequalities comes
from Choquet’stheory, atheory whose highlightswere presented by R. R. Phelpsin his
booklet [5]. For a more advanced material, see the monograph of E. M. Alfsen [1].
The basic observation is that the middle point (a+ b)/2 representsthe barycenter
of the given interval [a, b] (with respect to a uniform distribution of mass), while the
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620 CONSTANTIN P. NICULESCU

right hand side of (HH) represents the mean value of f over the set of extreme points
of the given interval.

Then the two sides of (HH) follow different routes, with different degrees of
generality.

To enter the details, let K be a compact convex subset K of a locally convex
Hausdorff space E and suppose there is given a Radon probability measure u on K
(which can be thought of as a mass distribution on K). The u— barycenter of K is
defined as the unique point x, of K such that

X'(%,) = / X'(x) dp(x) )

for every continuouslinear functional x’ on E; see[5], Proposition1.1. When E isthe
Euclidean n— dimensional space, the normed and the weak convergence are the same,
so that

x“:/deu(x)

i.e., the barycenter coincides with the moment of first order of p .
Animmediate consequence of (B) isthe validity of the inequality

f%) < [ 10 du(

for every continuous convex function f : K — R, afact which extends the lft part of
the classical Hermite-Hadamard inequality. For details, see the remark before Lemma
4.1in [5]. Another remark is the following monotonicity property (noticed by S. S.
Dragomir [3] in a particular case):

PropPosITION 1. Under the above hypothesis, the function

M(t) :/K f(tX + (1 — t)xy) du(x)

is convex and nondecreasingon [0, 1].

When E = R" and u istheL ebesguemeasure, thevalueof M at t equalsthemean
of f|K¢,where K; denotestheimage of K through the mapping x — tx + (1 — t)x,,

i.e.,
1
M(t) = m « f(X) du(X)

Proposition 1 tells us that shrinking K to x,,, via the sets K;, the mean of f|K;
decreasesto f(x,). Theproof will need the following approximation argument, which
was shown to us by Prof. Gheorghe Bucur:

LEMMA 2. Every Radon probability measure ¢ on K is the pointwise limit of a
net of discrete Radon probability measures p, on K, which have the same barycenter
as .

Proof. We have to prove that for every € > 0 and every finite family f4, ..., fy
of continuous real functions on K there exists a discrete Radon probability measure v
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such that

Xy =X, and sup |v(fi) —pu(f)| <e.
1<k<n

As K is compact and convex and the fy’s are continuous, there exists a finite
covering (Dq)s Of K by open convex sets such that the oscillation of each of the
functions fx oneachset D, is < €. Let (¢4)q beapartition of the unity, subordinated
to the covering (D4 ) and put

V= Za U(a) &(a)

where x(a) isthe barycenter of the measure f — (¢4 f)/u(da). AS Dy isconvex
and the support of ¢ isincludedin D, , we have x(a) € D, . On the other hand,

=" u(hga) =" lfl({]q)ia)) ' =" h(x(@)) - p(¢a) = v(h)

for every continuousaffinefunction h : K — R. Consequenly, u and v havethe same
barycenter. Finally, for each Kk,

() —u(f)] = ‘Z H(9a) fu(x(@) = > 1(9a fk‘

(¢a fk)
> ude) {fk<x<a>>— e

£ Hga) = O

Proof of Proposition 1. A straightforward computation showsthat M(t) isconvex
and M(t) < M(1). Then, assuming the inequaity M(0) < M(t), from the convexity
of M(t) weinfer

N

M() —M(s) _ M(s) — M(0)
t—s s
for0<s<t<g lie, M(t) isnondecreasing. To end the proof, it remains to show
that M( ) > (0) = f(x,). For, choose anet (uq)q Of discrete Radon probability
measureson K, asin Lemma2 above. Clearly,

f(xu)g/K f(tx + (1= t)x,) dug(x)  foral a

and thus the desired conclusion follows by passing to thelimit over a. O

The extension of the right hand inegquality in (HH) is a bit more subtle and makes
the abject of Choquet’s theory, briefly summarized in the sequel. Given two Radon
probability measures yu and A on K, wesay that u ismajorizedby A (i.e, u < A)

if
/fdu /fd)\

for every continuous convex function f : K — R. Asnoticed in [5], < is a partia
ordering on the set of all Radon probability measureson K.
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THE CHOQUET THEOREM 3. ([5], ch. 3). Let u be a Radon probability measure
on a metrizable compact convex subset K of alocally convex Hausdor ff space E . Then
there exists a maximal Radon probability measure A > u such that the following two
conditions are verified:

i) The barycenter of K with respectto A and u isthe same;
ii) Theset &xt K of all extremal pointsof K isa Gs— subset of K and A is
concentratedon &xt K (i.e, A(K\ &xtK) =0).

Under the hypotheses of the above result we get

) < [ 10au00 < [ farco (Ch)

for every continuous convex function f : K — R, a fact which represents a full
extension of (HH) in the case of metrizable compact convex sets. Notice that the right
part of (Ch) reflects the maximum principle for convex functions.

Ingeneral, A isnot unique, except for the case of simplices; see [5], ch. 9.

Another useful remark is that every Radon probability measure A , concentrated
on &xt K, for which (Ch) holds, ismaximal. Cf. [5], Corallary 9.8.

According to the above discussion, if K = [a, b], then necessarily A isaconvex
combination of the Dirac measures ¢, and &,,say A = (1— a)&; + ag, . Thisremark
yields Fink’s Hermite-Hadamard typeinequality [4] in the case of probability measures:

/f ) du(x bb X“.f(a)+xt;‘__;-f(b) (F)

for every continuous convex functions f : [a, b] — R and every Radon probability
measure u on [a, b]; asusualy, x, denotesthebarycenterof 1 ,i.e, X, = f;xdu(x).
In fact, checking

/f Ydu(x) < (1—a) - f(a)+a - f(b)

for f(x) = (x—a)/(b—a) and f(x) = (b—x)/(b— a) weobtain
Xy —a
b—a
ie,a=(xy—a)/(b—a).
The argument above can be extended easily for all continuous convex functions

defined on n— dimensiona simplices K = [Ag, As, ..., Ay] in R". Then the corre-
sponding analogue of (F) for Radon probability measures 1 on K will read as

b—
and respectively 1 — a > 5 _X;

a>

f(Xy) g/K f(x)du <> Vol ([Ag, A A A - FA);
k=0

here X, denotes the barycenter of p, and [Ag, Ay, .. ., A ..., An] denotes the sub-
simplex obtained by replacing Ax by X,; thisisthe sub-simplex oppositeto A, when
adding X, asanew vertex. Vol, representsthe Lebesgue measurein R".
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In the case of closed balls K = Br(a) in R®, &xtK coincides with the sphere
Sk(@) ; the paper by Dragomir [3] illustrates the af orementioned theorem of Choquet in
the casewhere 1 isthe normalized L ebesgue measure on Bgr(a) . Hisargument, based
on Calculus, avoids Choquet’s theory, but it cannot be extended to arbitrary compact
convex sets and arbitrary Radon probability measures on them.

The Choquet theory istoday awell established subject in Mathematics, with many
extensions and ramifications, and Theorem 3 above is just the beginning of the story.
The reader will find much fun formulating many other results in the Choquet theory as
Hermite-Hadamard type inequalities.
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