
M athematical
Inequalities

& Applications
Volume 5, Number 4 �2002�, 619–623

THE HERMITE–HADAMARD INEQUALITY FOR

CONVEX FUNCTIONS OF A VECTOR VARIABLE
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�communicated by A. M. Fink�

Abstract. The Hermite-Hadamard inequality is discussed in the light of Choquet’s theory.

It is well known that every convex function f : �a� b� � R can be modified at
the endpoints to become convex and continuous. An immediate consequence of this
remark is the integrability of f . The mean value of f ,

M� f � �
1

b� a

Z b

a
f �x� dx�

can then be estimated by the Hermite-Hadamard Inequality,
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which follows easily from the midpoint and trapezoidal approximation to the middle
term. Moreover, under the presence of continuity, equality occurs �in either side� only
for linear functions. An updated account on �HH� are to be found in �2�.

What about the case of functions of several variables? A recent paper by S. S.
Dragomir �3� �see also �2�� describes the case of balls in R3 , by proving that

f �a� �
1

Vol BR�a�

ZZZ
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f �x� dV �
1

Area SR�a�

ZZ
SR�a�

f �x� dS

for every continuous convex function f : BR�a� � R . However, as we shall show in
the sequel, more general results are already available in the existing literature. In fact,
the right approach of the entire subject of Hermite-Hadamard type inequalities comes
from Choquet’s theory, a theory whose highlights were presented by R. R. Phelps in his
booklet �5�. For a more advanced material, see the monograph of E. M. Alfsen �1�.

The basic observation is that the middle point �a� b��2 represents the barycenter
of the given interval �a� b� �with respect to a uniform distribution of mass�, while the
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right hand side of �HH� represents the mean value of f over the set of extreme points
of the given interval.

Then the two sides of �HH� follow different routes, with different degrees of
generality.

To enter the details, let K be a compact convex subset K of a locally convex
Hausdorff space E and suppose there is given a Radon probability measure µ on K
�which can be thought of as a mass distribution on K �. The µ� barycenter of K is
defined as the unique point xµ of K such that

x��xµ � �

Z
K

x��x� dµ�x� �B�

for every continuous linear functional x � on E; see �5�, Proposition 1.1. When E is the
Euclidean n�dimensional space, the normed and the weak convergence are the same,
so that

xµ �

Z
K

x dµ�x�

i.e., the barycenter coincides with the moment of first order of µ .
An immediate consequence of �B� is the validity of the inequality

f �xµ� �

Z
K

f �x� dµ�x�

for every continuous convex function f : K � R , a fact which extends the left part of
the classical Hermite-Hadamard inequality. For details, see the remark before Lemma
4.1 in �5�. Another remark is the following monotonicity property �noticed by S. S.
Dragomir �3� in a particular case�:

PROPOSITION 1. Under the above hypothesis, the function

M�t� �
Z

K
f �tx � �1� t�xµ � dµ�x�

is convex and nondecreasing on �0� 1� .

When E � Rn and µ is the Lebesgue measure, the value of M at t equals the mean
of f jKt , where Kt denotes the image of K through the mapping x � tx � �1� t�xµ ,
i.e.,

M�t� �
1

µ�Kt�

Z
Kt

f �x� dµ�x��

Proposition 1 tells us that shrinking K to xµ , via the sets Kt , the mean of f jKt

decreases to f �xµ� . The proof will need the following approximation argument, which
was shown to us by Prof. Gheorghe Bucur:

LEMMA 2. Every Radon probability measure µ on K is the pointwise limit of a
net of discrete Radon probability measures µα on K , which have the same barycenter
as µ .

Proof. We have to prove that for every ε � 0 and every finite family f1� � � � � fn

of continuous real functions on K there exists a discrete Radon probability measure ν
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such that
xν � xµ and sup

1�k�n
jν� fk�� µ� fk�j � ε�

As K is compact and convex and the fk ’s are continuous, there exists a finite
covering �Dα �α of K by open convex sets such that the oscillation of each of the
functions fk on each set Dα is � ε . Let �ϕα �α be a partition of the unity, subordinated
to the covering �Dα �α and put

ν �
X

α
µ�ϕα � εx�α �

where x�α � is the barycenter of the measure f � µ�ϕα f ��µ�ϕα � . As Dα is convex
and the support of ϕα is included in Dα , we have x�α � � Dα . On the other hand,
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X

α
µ�hϕα � �

X
α

µ�hϕα �

µ�ϕα �
� µ�ϕα � �

X
α

h�x�α �� � µ�ϕα � � ν�h�

for every continuous affine function h : K � R . Consequenly, µ and ν have the same
barycenter. Finally, for each k ,
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Proof of Proposition 1. A straightforward computation shows that M�t� is convex
and M�t� � M�1� . Then, assuming the inequality M�0� � M�t� , from the convexity
of M�t� we infer

M�t��M�s�
t � s

�
M�s� �M�0�

s
� 0

for 0 � s � t � 1 i.e., M�t� is nondecreasing. To end the proof, it remains to show
that M�t� � M�0� � f �xµ� . For, choose a net �µα �α of discrete Radon probability
measures on K , as in Lemma 2 above. Clearly,

f �xµ � �

Z
K

f �tx � �1� t�xµ � dµα �x� for all α

and thus the desired conclusion follows by passing to the limit over α . �

The extension of the right hand inequality in �HH� is a bit more subtle and makes
the object of Choquet’s theory, briefly summarized in the sequel. Given two Radon
probability measures µ and λ on K , we say that µ is majorized by λ �i.e., µ � λ �
if Z

K
f �x� dµ�x� �

Z
K

f �x� dλ �x�

for every continuous convex function f : K � R . As noticed in �5�, � is a partial
ordering on the set of all Radon probability measures on K .
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THE CHOQUET THEOREM 3. ��5�, ch. 3�. Let µ be a Radon probability measure
on a metrizable compact convex subset K of a locally convex Hausdorff space E . Then
there exists a maximal Radon probability measure λ � µ such that the following two
conditions are verified:

i) The barycenter of K with respect to λ and µ is the same;
ii) The set E xt K of all extremal points of K is a Gδ� subset of K and λ is

concentrated on E xt K (i.e., λ �K nE xt K � � 0� .

Under the hypotheses of the above result we get

f �xµ� �

Z
K

f �x� dµ�x� �
Z
E xt K

f �x� dλ �x� �Ch�

for every continuous convex function f : K � R , a fact which represents a full
extension of �HH� in the case of metrizable compact convex sets. Notice that the right
part of �Ch� reflects the maximum principle for convex functions.

In general, λ is not unique, except for the case of simplices; see �5�, ch. 9.
Another useful remark is that every Radon probability measure λ , concentrated

on E xt K , for which �Ch� holds, is maximal. Cf. �5�, Corollary 9.8.
According to the above discussion, if K � �a� b� , then necessarily λ is a convex

combination of the Dirac measures εa and εb , say λ � �1�α �εa �αεb . This remark
yields Fink’s Hermite-Hadamard type inequality �4� in the case of probability measures:Z b

a
f �x� dµ�x� �

b� xµ

b� a
� f �a� �

xµ � a

b� a
� f �b� �F�

for every continuous convex functions f : �a� b� � R and every Radon probability

measure µ on �a� b�; as usually, xµ denotes the barycenter of µ , i.e, xµ �
R b

a x dµ�x� .
In fact, checking Z b

a
f �x� dµ�x� � �1� α � � f �a� � α � f �b�

for f �x� � �x � a���b� a� and f �x� � �b� x���b� a� we obtain

α �
xµ � a

b� a
and respectively 1� α �

b� xµ

b� a

i.e., α � �xµ � a���b� a� .
The argument above can be extended easily for all continuous convex functions

defined on n�dimensional simplices K � �A0� A1� � � � � An� in Rn . Then the corre-
sponding analogue of �F� for Radon probability measures µ on K will read as

f �Xµ� �

Z
K

f �x� dµ �
nX

k�0

Voln ��A0� A1� � � � � bAk� � � � � An� � f �Ak�;

here Xµ denotes the barycenter of µ , and �A0� A1� � � � � bAk� � � � � An� denotes the sub-
simplex obtained by replacing Ak by Xµ ; this is the sub-simplex opposite to Ak , when
adding Xµ as a new vertex. Voln represents the Lebesgue measure in Rn .
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In the case of closed balls K � BR�a� in R3 , E xt K coincides with the sphere
SR�a� ; the paper by Dragomir �3� illustrates the aforementioned theorem of Choquet in
the case where µ is the normalized Lebesgue measure on BR�a� . His argument, based
on Calculus, avoids Choquet’s theory, but it cannot be extended to arbitrary compact
convex sets and arbitrary Radon probability measures on them.

The Choquet theory is today a well established subject in Mathematics, with many
extensions and ramifications, and Theorem 3 above is just the beginning of the story.
The reader will find much fun formulating many other results in the Choquet theory as
Hermite-Hadamard type inequalities.
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